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Metastable states in cellular automata for traffic flow?
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Abstract. Measurements on real traffic have revealed the existence of metastable states with very high
flow. Such states have not been observed in the Nagel-Schreckenberg (NaSch) model which is the basic
cellular automaton for the description of traffic. Here we propose a simple generalization of the NaSch
model by introducing a velocity-dependent randomization. We investigate a special case which belongs to
the so-called slow-to-start rules. It is shown that this model exhibits metastable states, thus sheding some
light on the prerequisites for the occurance of hysteresis effects in the flow-density relation.

PACS. 02.50.Ey Stochastic Processes – 05.60.+w Transport processes: theory – 89.40.+k Transportation

1 Introduction

A few years ago, Nagel and Schreckenberg [1] (NaSch)
have proposed a probabilistic cellular automaton (CA) for
the description of single-lane highway traffic1. Using very
simple rules, this model is able to reproduce the basic phe-
nomena encountered in real traffic, e.g. the occurance of
phantom traffic jams (“jams out of nowhere”). The NaSch
model is “minimal” in the sense that every simplification
of the rules no longer produces realistic results. On the
other hand, for the description of more complex situations
(e.g. multi-lane traffic, ramps)2 or for a proper modelling
of the “fine-structure” of traffic flow, additional rules have
to be added and/or the basic rules have to be modified.

The NaSch model [1] is a probabilistic cellular automa-
ton. Space and time (and hence the velocities) are discrete.
The road is divided into cells of length 7.5 m. Each cell
can either be empty or occupied by just one car. The state
of car j (j = 1, ..., N) is characterised by its momentary
velocity vj (vj = 0, 1, ..., vmax). The state of the system
at time t+ 1 can be obtained from the state at time t by
applying the following four rules to all cars at the same
time (parallel dynamics):

R1: Acceleration:
vj(t)→ vj(t+ 1

3 ) = min{vj(t) + 1, vmax}

R2: Braking:
if vj(t+ 1

3 ) > dj(t) then vj(t+ 2
3 ) = dj(t)

else vj(t+ 2
3 ) = vj(t+ 1

3 )

? Dedicated to J. Zittartz on the occasion of his 60th birthday
a e-mail: as@thp.uni-koeln.de
1 For an overview of other approaches, see e.g. [2–5].
2 For applications to urban traffic, see e.g. [6,7].

R3: Randomization:
vj(t+ 2

3 )
p
→ vj(t+ 1) = max{0, vj(t+ 2

3 )− 1}
with probability p

R4: Driving:
car j moves vj(t+ 1) cells.

Here dj(t) denotes the number of empty cells in front of
car j, i.e. the gap or headway. One timestep t → t + 1
corresponds to approximately 1 s in real time [1].

In the spirit of modelling complex phenomena in sta-
tistical physics, the NaSch model does not try to describe
traffic flow very accurately on a microscopic level. Macro-
scopic effects observed in real traffic, e.g. the spontaneous
formation of jams, can be understood by introducing just
one simple stochastic parameter, the braking probability
p. Note that the motion of a single car might exhibit (on
short timescales) unrealistic features, like stopping from
maximum velocity within one timestep. However, after av-
eraging over the motion of all cars or on long timescales,
the NaSch model produces quite realistic results. There-
fore one should not try to relate these large fluctuations
to those observed in real traffic.

Besides the CA models which are discrete in space and
time, several other approaches to traffic flow have been dis-
cussed recently. Among these are space-continuous mod-
els in discrete time like the model of Krauß et al. [8,9], as
well as models continuous both in space and time, e.g. the
macroscopic (fluid-dynamical) models [10], the optimum-
velocity model [11], coupled-map models [12] and gas-
kinetic models [13]. For further references we refer to [2–4].

In the present paper we want to investigate hysteresis
effects encountered in empirical observations [14–16]. Such
effects are related to the existence of metastable states in
certain density regimes. In the NaSch model these states
have not be observed. Here we present slightly modified
models which are able to produce metastable states and
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hysteresis. As a consequence, the occurance of metastable
states is therefore not related to the use of realistic braking
rules, a continuum description or deterministic models.

In order to establish the existence of metastable states
one can follow two basic strategies. In the first method,
the density of cars is changed adiabatically by adding or
removing vehicles from the stationary state at a certain
density. Starting in the jamming phase (large densities)
and removing cars, one obtains the lower branch of the
hysteresis curve. On the other hand, by adding cars to a
free flowing state (low densities), one obtains the upper
branch. The second method does not require changing
the density. Instead one starts from two different initial
conditions, the megajam and the homogeneous state. The
megajam consists of one large, compact cluster of stand-
ing cars. In the homogeneous state, cars are distributed
equidistantly (with one large gap for incommensurate den-
sities).

In certain density regimes the fundamental diagram
can consist of two branches. In the upper branch (with
higher flow) there are almost no interactions between the
cars and the system remains in a homogeneous, jam-free
state. In the lower branch, however, the system is in a
“phase-separated” state, consisting of one large jam and
a free-flowing part.

Experimental observations [17] suggest that a reduc-
tion of the outflow from a jam compared to the maximum
possible flow3 is an important ingredient for the occur-
rance of metastable states with large lifetimes. Such a
reduction can be implemented by so-called slow-to-start
rules, where standing cars accelerate with lower probabil-
ity than moving cars. It leads to a downstream flow with a
relatively low density corresponding to the lower branch of
the hysteresis curve. Due to the reduction of the density in
the outflow region of a jam, the flow in the jammed state
is significantly lower than the flow of the homogeneous
state at the same density.

The paper is organized as follows: In Section 2 two
models with slow-to-start rules are investigated. In Sec-
tion 3 we introduce a slightly modified NaSch model with
a velocity-dependent randomization. In this way, one in-
corporates the basic ingredients necessary to produce hys-
teresis. In the concluding Section 4 we summarize our re-
sults and compare with those for other models and real
traffic.

2 Models with slow-to-start rules

In this section we briefly present results for two models
with slow-to-start (s2s) rules [18], the T2 model [19,20]
and the BJH model [21]. These models have been intro-
duced in order to model the restart behaviour of stopped
cars in a more realistic fashion. As will be demonstrated
below, these s2s rules are an important ingredient for the
occurance of metastable states, although the authors of
[19,21] did not realize the connection between s2s rules
and metastability encountered in real traffic.

3 This reduction is often referred to as “capacity drop”.
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Fig. 1. Fundamental diagram of the T2 model (vmax = 5,
p = 0.01, pt = 0.75) obtained by starting from two different
initial conditions, a completely jammed state (full line) and a
homogeneous state (broken line). The peak of the full line is a
finite-size effect.

2.1 T2 model

Takayasu and Takayasu (T2) [19] have first suggested a
CA model with a s2s rule. This rule has been generalized
in [18] as follows: A standing car with exactly one empty
cell in front of it accelerates with probability qt = 1− pt,
while all other cars accelerate deterministically. The other
update rules (R2-R4) of the NaSch model are unchanged,
e.g. all cars are still subject to the randomization step. Due
to this modification already for vmax = 1 the particle-hole
symmetry is broken.

In Figure 1 we show the fundamental diagram of the
T2 model with vmax = 5, p = 0.01 and pt = 0.75. The
system size used for the simulation was L = 1000. In or-
der to equilibrate the system, 10 000 lattice updates have
been performed. The data shown in Figure 1 represent an
average over 100 000 sweeps through the lattice.

Comparing the simulation results with those for the
NaSch model, two qualitative differences have to be dis-
cussed. First, the fundamental diagram has an inflection
point in the high density regime and second the flow be-
haviour is non-unique in a density regime below the den-
sity of maximum flow ρmax.

The existence of an inflection point for large pt has first
been noticed in [18] for the case vmax = 1. In contrast,
the fundamental diagram of the NaSch model is always
convex. The different behaviour of the T2 model for large
pt and large densities ρ is related to the fact that space is
not used as efficiently as in the NaSch model. One finds a
similar behaviour in space-continuous models [22]. There
is some experimental evidence that in certain situations
the shape of the fundamental diagram differs from the
convex form. This behaviour of the average flow can be
easily obtained tuning the parameter pt [18,23].

The non-unique behaviour of the flow for densities just
below ρmax is due to the fact that for these densities
the average flow still depends on the initial configuration.
The measurements in Figure 1 have been performed by
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Fig. 2. Fundamental diagram of the T2 model (vmax = 1,
p = 0.5, pt = 1) for two system sizes. For densities slightly
above ρ = 0.5 the stationary state could only be reached for
the smaller system.

applying the second method described in the introduc-
tion. The lower branch of the fundamental diagram cor-
responds to measurements starting from a initially com-
pletely jammed configuration while the upper branch has
been obtained starting with a homogeneous initialization.
It should be mentioned that the same result can also be
obtained by applying the first method, i.e. by changing
the density adiabatically. Since the flow depends on the
history of the system, diagrams like those of Figure 1 are
usually called hysteresis curves.

For low densities the stationary state consists of ho-
mogeneous configurations which are completely jam-free.
At higher values of the global density the configurations
contain one large jam. In contrast to the NaSch model,
no spontaneous formation of jams in the outflow region of
the large jam has been observed for the system sizes we
took into account. Therefore the jammed states are phase
separated states, unlike for the case of the NaSch model.

It should be noted that the maximum value of the
average flow still depends on the number of updates as well
as on the system size. Therefore we can not exclude that
the stationary value of the average flow is unique in the
thermodynamic limit. Nevertherless the metastable states
are extremely stable, even for large systems. Moreover, in
contrast to standard problems of statistical mechanics, not
the thermodynamic limit is relevant for practical purposes,
but the behavior of systems of finite length (note that
10 000 lattice sites correspond to a road of length 75 km
in reality). Since in reality roads and observation times
are always finite, the above results are sufficient for all
practical purposes.

In Figure 2 we show the fundamental diagram for
vmax = 1, p = 0.5 and pt = 1, i.e. stopped cars can only
move if there are at least two empty cells in front. Obvi-
ously completely blocked states exist for densities ρ ≥ 0.5,
where the number of empty cells in front of each car is
smaller than two. Since fluctuations are absent in those
states, they have an infinite lifetime. Therefore the flow in
the stationary state is zero. In the region 0.5 ≤ ρ . 0.66

states with a finite flow exist. Although these states are
not stationary, one has to perform an extremely large
number of update steps until the flow vanishes for large
system sizes and densities slightly above ρ = 0.5, because
the number of blocked configurations is very small com-
pared to the total number of configurations. Precisely at
ρ = 0.5, the blocked state is unique and the typical time
to reach this state diverges exponentially with the sys-
tem size. Therefore we used very small systems in order
to obtain the lower branch of the fundamental diagram.

Note that the mechanism for metastability in the case
pt = 1 is different. The hysteresis curve in Figure 2
has been obtained by starting from two different homo-
geneous states, differing only in the velocity of the cars.
The jammed branch is reached by starting with a config-
uration where all cars j have a velocity vj(t = 0) = 0,
whereas the upper branch corresponds to an initializa-
tion vj(t = 0) = vmax. In contrast, by following the first
method described in the introduction, one would not find
hysteresis, since a megajam initialization would also yield
the high-current branch.

The reason for the occurance of hysteresis in the limit
vmax = 1 and pt = 1 is the existence of a “geometrical”
phase transition. If the critical density is exceeded, the
cars can no longer move since there is not enough free
space. The “geometrical” phase transition makes it possi-
ble to find hysteresis even in the case vmax = 1.

Finally we want to remark that the pt = 1 limit of
the T2 model is some sense complementary to the cruise-
control limit [24] of the NaSch model. In the T2 model the
completely blocked state is stabilized due to the absence
of fluctuations whereas in the cruise-control limit one finds
the absence of fluctuations for homogeneous states at low
densities.

2.2 BJH model

The s2s rule of the T2 model is a “spatial” rule. The range
of interaction for standing cars is larger than in the NaSch
model and the restart behaviour depends only on the spa-
tial arrangement of the vehicles. However, there are other
ways of implementing a s2s behaviour. In the Benjamin-
Johnson-Hui (BJH) model [21] cars which had to brake
due to the next car ahead, will move on the next oppor-
tunity only with probability 1− ps. Note that in contrast
to the T2 this slow-to-start rule requires “memory”, i.e.
it is a “temporal” rule depending on the number of trials
and not on the free space available in front of the car.

For the BJH model no metastable states and hystere-
sis effects have been found until now since only the case
vmax = 1 has been investigated thoroughly [21,18]. For
higher velocities we expect the occurance of metastable
states, since also in the BJH model the outflow from a
jam is smaller than the maximal flow.

Our simulations show that for vmax > 1 the overall be-
haviour of the BJH model is very similar to that of the T2

model (for pt < 1). Therefore we are not going to discuss
it here. In Figure 3 we show a typical fundamental di-
agram. There is, however, no inflection point and the



796 The European Physical Journal B

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1

J(
ρ)

ρ

jam
hom

Fig. 3. Fundamental diagram of the BJH model (vmax = 5,
p = 0.01, ps = 0.75) obtained using two different initial con-
ditions, namely a completely jammed state (full line) and a
homogeneous state (broken line).

fundamental diagram is convex for all ps. This supports
the view that the existence of an inflection point is a “spa-
tial” effect.

3 NaSch model with velocity-dependent
randomization

Here we present a simple generalization of the NaSch
model which incorporates slow-to-start behaviour without
introducing memory (like in the BJH model) or a longer-
ranged interaction (like in the T2 model). This new s2s
rule is therefore neither temporal nor spatial.

Instead, a velocity-dependent randomization (VDR)
parameter p = p(v(t)) is introduced. This parameter has
to be determined before the acceleration step R1. For sim-
plicity we here study only the case

p(v) =

{
p0 for v = 0,

p for v > 0,
(1)

which already contains the most important features of the
general case [25]. Since we are interested in hysteresis phe-
nomena, we restrict ourselves to the case p0 ≥ p. Note
that for p0 = p the NaSch model is recovered. The cruise-
control limit [24] corresponds to the choice p(vmax) = 0
and p(v) = p for v < vmax.

In the following we will use a maximum velocity
vmax = 5, braking probability p = 1/64 of the moving cars
and a higher value p0 = 0.75 for the braking probability
of stopped cars. Simulation runs have been performed for
periodic systems with L = 10 000 lattice sites.

Figure 4 shows the fundamental diagram of the modi-
fied model. Obviously the average flow J(ρ) can take two
values in the density interval between ρ1 and ρ2 depending
on the chosen initialization. The larger values of the aver-
age flow can be obtained using a homogeneous initializa-
tion of the system. The lower branch is obtained starting
from a completely jammed state. Moreover, varying the
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Fig. 4. Fundamental diagram of VDR model (vmax = 5, p0 =
0.75, p = 1/64, L = 10 000). For comparison the fundamental
diagrams of the NaSch model with p = 0.75 and p = 1/64 are
given.

particle number adiabatically, one can trace a hysteresis
loop. One gets the upper branch by adding cars to the
stationary state with ρ < ρ1 and the lower one by remov-
ing cars from the stationary state with ρ > ρ2. For a fixed
value of p, ∆J = J(ρ2)− J(ρ1) depends linearly on p0 for
wide a range of parameters.

Increasing the system size, we observe a decrease of the
density ρ2 towards the branching density ρ1. The jammed
states become stable for densities ρ ≥ ρ1 even for global
densities very close to ρ1. Again it should be noted that
the homogeneous states have extremely long life-times and
should therefore be relevant for realistic systems.

It is instructive to compare the fundamental diagram
of the VDR model with those of the corresponding NaSch
models. For small densities ρ � 1 there are no slow cars
in the VDR model since interactions between cars are ex-
tremely rare. Here the flow is given by J(ρ) ≈ ρ(vmax−p),
i.e. identical to the NaSch model with randomization p.
For large densities 1− ρ� 1, on the other hand, the flow
is given by J(ρ) ≈ (1−p0)(1−ρ) which corresponds to the
NaSch model with randomization p0. For densities close to
ρ = 1, only cars with velocities vj = 0 or vj = 1 exist. The
number of moving cars goes to zero so that asymptotically
the flow is completely determined by p0.

The microscopic structure of the jammed states in the
VDR model differs from those found in the NaSch model.
While jammed states in the NaSch model contain clusters
with an exponential size-distribution [23], one can find
phase separation in the VDR model. The reason for this
behaviour is the reduction of the outflow from a jam. If
the outflow from a jam is maximal, any small jam in the
free flow regime dissolves immediately since the outflow
from such a jam is larger than the global flow. Therefore
phase separation can not occur in that case. However, if
the outflow from a jam is reduced, the density in the free
flow regime is smaller than the density of maximum flow
and cars can propagate freely in the low density part of the
lattice. Due to the reduction of the density in the free flow
regime, no spontaneous formation of jams is observable in
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Fig. 5. Time-dependence of the length LJam(t) of the jam for ρ = 0.095. (a) Shows the time evolution of the length LJam(t)
of one sample. The average 〈LJam(t)〉 over 10 000 samples (b) shows an exponential decay.

the stationary state, if fluctuations in the free flow regime
are rare.

This picture is supported by a simple phenomenolog-
ical approach. Obviously the flow in the homogeneous
branch is given by Jhom = ρ(vmax − p) = ρvf , because
every car can move with the free-flow velocity vf . As-
suming that the high density states are phase separated,
we can obtain the second branch of the fundamental di-
agram. The phase separated states consist of a large jam
and a free flow regime, where each car moves with veloc-
ity vf . The density in the free flow regime ρf is deter-
mined by the average waiting time Tw = 1

1−p0
of the first

car in the jam and vf , because neglecting interactions be-
tween cars, the average distance of two consecutive cars is
given by ∆x = Twvf + 1 = ρ−1

f . Using the normalisation

L = NJ +NF∆x (NF (J) is the number of cars in the free
flow regime (jam)) we find that the flow is given by

Jsep(ρ) = (1− p0)(1− ρ). (2)

Obviously ρf is precisely the lower branching density ρ1,
because for densities below ρf the jam-length is zero. It
should be noted that this approach is only valid for p0 � p
and vmax > 1. The condition p� 1 guarantees that inter-
actions of cars due to velocity fluctuations are rare. As a
consequence, the jam is compact in that limit. For increas-
ing p, the jam becomes less dense. In the case vmax = 1,
cars can stop spontaneously, even in the free-flow regime.
If p0 is large enough, these cars might initiate a jam. This
is the basic reason why hysteresis is usually not observed
for vmax = 1.

Measurements of the average flow show that the lower
branch of the fundamental diagram is not stable near the
density ρ1, if small system sizes are considered. Therefore
we performed a more detailed stability analysis of the ho-
mogeneous and the jammed state near ρ1 and ρ2. Close
to ρ1, the large jam present in the initial configuration
dissolves and the average length 〈LJam(t)〉 decays expo-
nentially in time (Fig. 5). It should be noted that this be-
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Fig. 6. Space-time diagram of the VDR model for ρ =
0.15, L = 400, p = 0.01 and p0 = 0.5. The homogeneous initial
state is not destroyed immediately, but after approximately
93 000 lattice updates. In the outflow regime of the jam the
density is reduced compared to the average density.

haviour is not the consequence of a continuous “melting”
of the large jam. In contrast, the jam-length LJam(t) is
strongly fluctuating without any obvious systematic time-
dependence (Fig. 5). Once a homogeneous state without
a jammed car is reached, no new jams are formed. There-
fore the homogeneous state is stable near ρ1. For large
system sizes the jammed states are stable for ρ ≥ ρ1, also
for densities only slightly above ρ1, because the average
length of the jam is proportional to the system size, while
the fluctuations grow sub-extensive.

Analogous to the metastable jammed states near ρ1,
homogeneous initializations for densities slightly above ρ2

lead to metastable homogeneous states with short life-
times. Figure 6 shows the spontaneous formation of jams
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due to velocity fluctuations. The finite lifetimes of the ho-
mogeneous states are the qualitative difference between
this model and the cruise-control limit [24] of the NaSch
model, where the time evolution of homogeneous states at
low densities is completely deterministic.

For large system sizes the density difference ∆ρ =
ρ2 − ρ1 decreases. This can be explained by looking at
the mechanism of an emerging jam. Jams emerge due to
velocity fluctuations in dense regions of the homogeneous
states, where the distance dj +1 between consecutive cars
is less than vmax. In these regions all following cars have
to slow down if a car in front breaks in the randomiza-
tion step. Over-reactions of following cars finally can cause
jams. The probability to find clusters of an appropriate
length for a given density is proportional to the system
size. Therefore we expect that all homogeneous states are
unstable for ρ > ρ1 in the thermodynamic limit.

For higher values of p the lifetime of homogeneous
states at densities ρ > ρ1 is very small. Nevertheless one
can observe the same microscopic structure of the high
density states as long as the outflow of a jam is suffi-
ciently reduced. A rough estimate for the minimal differ-
ence between p0 and p necessary to observe phase separa-
tion can be obtained from the following arguments based
on the features of a typical fundamental diagram of the
VDR model at small p and large vmax (see Fig. 7). In
the following we assume that the fundamental diagram
is perfectly linear up to ρ2, i.e. Jhom(ρ) = ρ(vmax − p).
As mentioned before, the phase-separated branch is de-
scribed by Jsep(ρ) = (1 − p0)(1 − ρ) (see Eq. (2)). In
order to find phase separation, the flow in the phase-
separated branch at density ρ2 must be lower than the
flow in the homogeneous branch, i.e. Jhom(ρ2) > Jsep(ρ2)
(Fig. 7a). For a situation as depicted in Figure 7b (i.e.
for Jhom(ρ2) < Jsep(ρ2)), no phase-separation would be
found. In the following we approximate ρ2 by ρmax, the
maximum of the corresponding NaSch model with ran-
domization p. Using the estimate ρmax = (1−p)/(vmax+1)
[26], the inequality for the current at ρ2 ≈ ρmax can be
used to obtain an estimate for the minimal difference p0−p
necessary to observe phase separation (see Fig. 8). Near
the deterministic limits (p = 0 and p = 1) and for large
values of vmax, already a small difference p0−p suffices to
generate phase separation. For all nondeterministic cases
the states of maximum flow are not completely homoge-
neous and the flow in the high density branch is somewhat
lower than Jsep(ρ) = (1− p0)(1− ρ) for larger values of p.
In addition, the large jam is not compact anymore.

In order to substantiate the picture developed in this
section we also investigated correlation functions and the
effect of perturbations (i.e. stopping a car temporarily to
induce a jam) [27]. The results are in full agreement with
our interpretation and will be presented elsewhere [28].

Another interesting result concerns the outflow from
a jam. Our simulations show [28] that the outflow is (al-
most) independent of the density of cars and depends only
on p. This in agreement with measurements on real traf-
fic [17] where it was found that the outflow only depends
on road and weather conditions and typical characteristics
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Fig. 7. Illustration of the flow branches (a) in the presence of
phase separation and (b) without phase separation.
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of the cars. Furthermore we have found that a structure
consisting of two separated jams is rather stable and can
exist for long times. This is also in agreement with exper-
imental observations [17].

For vmax = 1 we used the so-called car-oriented mean-
field theory [29] in order to obtain an analytical descrip-
tion of the fundamental diagram. The results are in good
agreement with simulations [27]. As expected, one finds no
phase separation at any p0 for p > 0. In the deterministic
limit (p = 0), however, a hysteresis curve can be observed
for p0 > 0. The fundamental diagram consists of two lin-
ear branches and is in perfect agreement with simulations
[28].

4 Summary and discussion

The ability to describe the existence of hysteresis is a
serious test for any traffic flow model. In this paper we
have investigated several variants of the NaSch model and
showed numerically the existence of metastable states in
a density region close to the maximum flow.

The hysteresis in the fundamental diagram is related
to the existence of metastable states. The latter are a con-
sequence of phase separation in a certain density regime.
The reason for this phase separation, on the other hand,
is a reduced outflow from jams which destabilizes clusters
forming in the outflow region. Such a reduction can be in-
corporated most easily by introducing slow-to-start rules
which try to model the restart behaviour of standing ve-
hicles more realistically. The three models presented here
used different s2s rules which can be classified as spatial,
temporal and velocity-dependent, respectively. For maxi-
mum velocity vmax > 1 the models exhibit a similar be-
haviour (see below). For vmax = 1 the spatial s2s rule of
the T2 model is exceptional since it leads to a existence
of a phase transition to a completely jammed state in the
limit pt → 1 where pt is the s2s parameter.

The NaSch model with velocity-dependent randomiza-
tion shows the coexistence of phase separated and ho-
mogeneous states in a density interval near the density
ρ2 of maximum flow. Near ρ2 interactions between cars
become important and one can find spontaneous forma-
tion of jams. Therefore the reduction of the density in the
outflow regime of a jam leads to stable phase separated
states. The reduction of interactions between cars in the
free flow regime can be confirmed by a phenomenological
approach, which gives very accurate results. In contrast to
the cruise-control limit of the NaSch model [24], where also
metastable states can be found, fluctuations are present
in both coexisting states.

The results presented here have interesting applica-
tions. In real traffic one is usually interested in stabiliz-
ing the homogeneous branch of the fundamental diagram
in order to maximize the throughput. This can be done
using signals to control the inflow, as in the case of the
Lincoln tunnel in New York [30]. Results of simulations
corresponding to such a situation will be presented in a
future publication [28].

In [22] a family of space-continuous models has been
investigated. Depending on the values of the maximum
acceleration and deceleration three classes can be distin-
guished. Class III shows no realistic behaviour since no
spontaneous jams are formed. A continuous analogue of
the NaSch model belongs to class II (high decelaration
limit). Here one finds spontaneous formation of jams, but
no metastable states. Finally, in class I spontaneous jam-
ming as well as metastable states are found. On a macro-
scopic level, models in classes I and II can be distinguished
by the ordering of the densities ρf , the density of the
outflow from a jam, and ρc, where the density of a ho-
mogeneous flow becomes unstable4. The discrete models
discussed here have very simple braking rules, but never-
theless exhibit the behaviour of class III. The existence
of metastable states is therefore not related to the use of
continuous space coordinates or “realistic” braking rules
[8,9] (e.g. anticipation of the behaviour of the driver
ahead).

Already the NaSch model has a tendency towards the
formation of metastable states. The outflow from a mega-
jam is maximal only in the deterministic case p = 0 and in
the so-called cruise-control limit [24]. In the generic case
p > 0 the outflow is not maximal [31], but organizes it-
self towards the “critical” current Jc where the correlation
length becomes maximal [26]. Since the difference between
Jmax and Jc is rather small, it is very difficult to observe
metastable states in the NaSch model.

The considerations in this paper show the flexibility of
the CA approach to traffic flow problems. A rather simple
and natural extension of the rules of the NaSch model al-
lows us to describe the formation of metastable states in
the fundamental diagram. The introduction of a velocity-
dependent randomization p(v) makes it possible to control
the properties of the free flow and congested flow indepen-
dently. Experimentally it has been found [17] that for real
traffic the reduction of the outflow Jout compared to the
maximum flow Jmax is approximately Jmax/Jout ≈ 1.5.
This value can be used to determine a realistic value of
p0 − p.

If one is willing to give up an overly realistic description
of the interactions between the vehicles one can obtain
rather simple CA models capable of describing even the
fine-structure of traffic flow in a satisfactory way.

Part of this work has been performed within the research pro-
gram of the SFB 341 (Köln–Aachen–Jülich).
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